EuPRAXIA Conceptual Design Report

Year: 2020

Authors: Assmann RW., Weikum MK., Akhter T., Alesini D., Alexandrova AS., Anania MP., Andreev NE., Andriyash I., Artioli M., Aschikhin A., Audet T., Bacci A., Barna IF., Bartocci S., Bayramian A., Beaton A., Beck A., Bellaveglia M., Beluze A., Bernhard A., Biagioni A., Bielawski S., Bisesto FG., Bonatto A., Boulton L., Brandi F., Brinkmann R., Briquez F., Brottier F., Brundermann E., B’scher M., Buonomo B., Bussmann MH., Bussolino G., Campana P., Cantarella S., Cassou K., Chancy A., Chen M., Chiadroni E., Cianchi A., Cioeta F., Clarke JA., Cole JM., Costa G., Couprie ME., Cowley J., Croia M., Cros B., Crump PA., D’Arcy R., Dattoli G., Del Dotto A., Delerue N., Del Franco M., Delinikolas P., De Nicola S., Dias JM., Di Giovenale D., Diomede M., Di Pasquale E., Di Pirro G., Di Raddo G., Dorda U., Erlandson AC., Ertel K., Esposito A., Falcoz F., Falone A., Fedele R., Pousa AF., Ferrario M., Filippi F., Fils J., Fiore G., Fiorito R., Fonseca RA., Franzini G., Galimberti M., Gallo A., Galvin TC., Ghaith A., Ghigo A., Giove D., Giribono A., Gizzi LA., Gr’ner FJ., Habib AF., Haefner C., Heinemann T., Helm A., Hidding B., Holzer BJ., Hooker SM., Hosokai T., H’bner M., Ibison M., Incremona S., Irman A., Iungo F., Jafarinia FJ., Jakobsson O., Jaroszynski DA., Jaster-Merz S., Joshi C., Kaluza M., Kando M., Karger OS., Karsch S., Khazanov E., Khikhlukha D., Kirchen M., Kirwan G., Kitygi C., Knetsch A., Kocon D., Koester P., Kononenko OS., Korn G., Kostyukov I., Kruchinin KO., Labate L., Le Blanc C., Lechner C., Lee P., Leemans W., Lehrach A., Li X., Li Y., Libov V., Lifschitz A., Lindstrom CA., Litvinenko V., Lu W., Lundh O., Maier AR., Malka V., Manahan GG., Mangles SPD., Marcelli A., Marchetti B., Marcouilly O., Marocchino A., Marteau F., de la Ossa AM., Martins JL., Mason PD., Massimo F., Mathieu F., Maynard G., Mazzotta Z., Mironov S., Molodozhentsev AY., Morante S., Mosnier A., Mostacci A., M’ller AS., Murphy CD., Najmudin Z., Nghiem PAP., Nguyen F., Niknejadi P., Nutter A., Osterhoff J., Espinos DO., Paillard JL., Papadopoulos DN., Patrizi B., Pattathil R., Pellegrino L., Petralia A., Petrillo V., Piersanti L., Pocsai MA., Poder K., Pompili R., Pribyl L., Pugacheva D., Reagan BA., Resta-Lopez J., Ricci R., Romeo S., Conti MR., Rossi AR., Rossmanith R., Rotundo U., Roussel E., Sabbatini L., Santangelo P., Sarri G., Schaper L., Scherkl P., Schramm U., Schroeder CB., Scifo J., Serafini L., Sharma G., Sheng ZM., Shpakov V., Siders CW., Silva LO., Silva T., Simon C., Simon-Boisson C., Sinha U., Sistrunk E., Specka A., Spinka TM., Stecchi A., Stella A., Stellato F., Streeter MJV., Sutherland A., Svystun EN., Symes D., Szwaj C., Tauscher GE., Terzani D., Toci G., Tomassini P., Torres R., Ullmann D., Vaccarezza C., Vallyau M., Vannini M., Vannozzi A., Vescovi S., Vieira JM., Villa F., Wahlstrtzm CG., Walczak R., Walker PA., Wang K., Welsch A., Welsch CP., Weng SM., Wiggins SM., Wolfenden J., Xia G., Yabashi M., Zhang H., Zhao Y., Zhu J., Zigler A.

Autors Affiliation: Deutsch Elektronensynchrotron Hamburg, D-22607 Hamburg, Germany; INFN, Sez Napoli, I-80126 Naples, Italy; INFN, Lab Nazl Frascati, I-00044 Rome, Italy; Cockcroft Inst, Warrington WA4 4AD, Cheshire, England; Univ Liverpool, Liverpool L69 7ZE, Merseyside, England; RAS, JIHT, Moscow 125412, Russia; Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia; Weizmann Inst Sci, Dept Phys Complex Syst, IL-7610001 Rehovot, Israel; Ctr Ric Bologna, ENEA, I-40129 Bologna, Italy; Univ Paris Saclay, Univ Paris Sud, CNRS, LPGP, F-91405 Orsay, France; INFN, Sez Milano, Via Celoria 16, I-20133 Milan, Italy; Wigner Res Ctr Phys, H-1121 Budapest, Hungary; Univ Sassari, Dip Architettura Design & Urbanist Alghero, I-07041 Alghero, Italy; Lawrence Livermore Natl Lab, Adv Photon Technol, NIF, Livermore, CA 94550 USA; Lawrence Livermore Natl Lab, Photon Sci Directorate, Livermore, CA 94550 USA; Univ Strathclyde, Dept Phys, SUPA, Glasgow G4 0NG, Lanark, Scotland; CNRS, Ecole Polytech, LLR, Palaiseau, France; Univ Paris Saclay, Palaiseau, France; Sorbonne Univ, CNRS, Ecole Polytech, LULI,CEA, F-91128 P alaiseau, France; Karlsruhe Inst Technol, D-76131 Karlsruhe, Germany; Univ Lille, CNRS, PhLAM, UMR 8523, Lille, France; Univ Manchester, Manchester M13 9PL, Lancs, England; CNR, Ist Nazl Ott, I-56124 Pisa, Italy; Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France; Europportunities OU, Sopruse Pst 9, EE-10615 Tallinn, Estonia; Forschungszentrum Julich, D-52428 Julich, Germany; Helmholtz Zentrum Dresden Rossendorf eV, D-01328 Dresden, Germany; Ctr Adv Syst Understanding CASUS, Gorlitz, Germany; Univ Paris Sud, IN2P3, CNRS, LAL, Orsay, France; Univ Paris Saclay, Orsay, France; Univ Paris Saclay, CEA, IRFU, DACM, F-91191 Gif Sur Yvette, France; Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China; Univ Roma Tor Vergata, I-00133 Rome, Italy; INFN, Sez Roma Tor Vergata, I-00133 Rome, Italy; Sci Tech Daresbury, STFC Daresbury Lab, Warrington, Cheshire, England; Imperial Coll London, John Adams Inst, Blackett Lab, London, England; Univ Oxford, Dept Phys, Oxford OX1 2JD, England; Univ Oxford, John Adams Inst, Oxford OX1 2JD, England; Leibniz Inst Hochstfrequenztechn, Ferdinand Braun Inst, D-12489 Berlin, Germany; Ctr Ric Frascati, ENEA, I-00044 Rome, Italy; Complesso Univ MS Angelo, CNR, SPIN, I-80126 Naples, Italy; Univ Lisbon, Inst Plasmas & Fusao Nucl, Inst Super Tecn, GoLP, Lisbon, Portugal; RAL, Cent Laser Facil, Didcot OX11 0QX, Oxon, England; Amplitude Technol, F-91029 Evry, France; Univ Napoli Federico II, I-80126 Naples, Italy; Univ Hamburg, D-22761 Hamburg, Germany; Ctr Ric Casaccia, ENEA, I-00124 Rome, Italy; GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany; INFN, Sez Pisa, Pisa, Italy; Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany; CERN, CH-1211 Geneva 23, Switzerland; Osaka Univ, Suita, Osaka 5650871, Japan; Univ Calif Los Angeles, Los Angeles, CA 90095 USA; Helmholtz Inst Jena, D-07743 Jena, Germany; Inst Opt & Quantenelekt, D-07743 Jena, Germany; QST, KPSI, Kyoto 6190215, Japan; Ludwig Maximilians Univ Munchen, D-80802 Munich, Germany; RAS, IAP, Nizhnii Novgorod 603950, Russia; ELI Beamlines, Dolni Brezany, Czech Republic; CNRS, Ecole Polytech, ENSTA, LOA,UMR 7639, F-91761 Palaiseau, France; Deutsch Elektronensynchrotron Zeuthen, D-15738 Zeuthen, Germany; Brookhaven Natl Lab, Upton, NY 11973 USA; SUNY Stony Brook, Stony Brook, NY 11794 USA; Tsinghua Univ, Beijing 100084, Peoples R China; Lund Univ, S-22100 Lund, Sweden; Univ Amsterdam, ARCNL, NL-1098 XG Amsterdam, Netherlands; Sapienza Univ Rome, I-00161 Rome, Italy; INFN, Sez Roma 1, Rome, Italy; Univ York, Dept Phys, Heslington YO10 5DD, England; CNR, Ist Nazl Ott, I-50019 Sesto Fiorentino, Italy; Univ Milan, I-20133 Milan, Italy; Univ Pecs, Inst Phys, H-7624 Pecs, Hungary; Queens Univ Belfast, Sch Math & Phys, Belfast BT71NN, Antrim, North Ireland; Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA; Diamond Light Source, Didcot OX11 0DE, Oxon, England; Thales Laser SA, F-91400 Orsay, France; RIKEN SPring 8 Ctr, Mikazuki, Hyogo 6795148, Japan;

Abstract: This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator research infrastructure based on novel plasma acceleration concepts and laser technology. It focuses on the development of electron accelerators and underlying technologies, their user communities, and the exploitation of existing accelerator infrastructures in Europe. EuPRAXIA has involved, amongst others, the international laser community and industry to build links and bridges with accelerator science – through realising synergies, identifying disruptive ideas, innovating, and fostering knowledge exchange. The Eu-PRAXIA project aims at the construction of an innovative electron accelerator using laser- and electron-beam-driven plasma wakefield acceleration that offers a significant reduction in size and possible savings in cost over current state-of-the-art radiofrequency-based accelerators. The foreseen electron energy range of one to five gigaelectronvolts (GeV) and its performance goals will enable versatile applications in various domains, e.g. as a compact free-electron laser (FEL), compact sources for medical imaging and positron generation, table-top test beams for particle detectors, as well as deeply penetrating X-ray and gamma-ray sources for material testing. EuPRAXIA is designed to be the required stepping stone to possible future plasma-based facilities, such as linear colliders at the high-energy physics (HEP) energy frontier. Consistent with a high-confidence approach, the project includes measures to retire risk by establishing scaled technology demonstrators. This report includes preliminary models for project implementation, cost and schedule that would allow operation of the full Eu-PRAXIA facility within 8-10 years.

Journal/Review: EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS

Volume: 229 (24)      Pages from: 3675  to: 4284

More Information: Open acce ss funding enabled and organized by Projekt DEAL. The completion of the EuPRAXIA design study and this Conceptual Design Report has been possible only because of the efforts and hard work of many people.Finally, we would like to acknowledge with much appreciation the European Union’s Horizon 2020 programme for our funding of this design study. Some of this work was also partially funded by the Center of Advanced Systems Understanding (CASUS) which is financed by Germany’s Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 653782. The information herein reflects only the views of its authors and the European Commission is not responsible for any use that may be made of the information contained.
KeyWords: Free-electron Laser; In-cell Code; Plasma-wakefield Acceleration; Chirped-pulse Amplification; Wake-field Acceleration; X-ray Source; Lateral Shearing Interferometry; Amplified Spontaneous-emission; High Peak Power; At-sparc-lab
DOI: 10.1140/epjst/e2020-000127-8

Citations: 38
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-24
References taken from IsiWeb of Knowledge: (subscribers only)