Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm

Year: 2021

Authors: Abi B., Albahri T., Al-Kilani S., Allspach D., Alonzi LP., Anastasi A., Anisenkov A., Azfar F., Badgley K., Baessler S., Bailey I., Baranov VA., Barlas-Yucel E., Barrett T., Barzi E., Basti A., Bedeschi F., Behnke A., Berz M., Bhattacharya M., Binney HP., Bjorkquist R., Bloom P., Bono J., Bottalico E., Bowcock T., Boyden D., Cantatore G., Carey RM., Carroll J., Casey BCK., Cauz D., Ceravolo S., Chakraborty R., Chang SP., Chapelain A., Chappa S., Charity S., Chislett R., Choi J., Chu Z., Chupp TE., Convery ME., Conway A., Corradi G., Corrodi S., Cotrozzi L., Crnkovic JD., Dabagov S., De Lurgio PM., Debevec PT., Di Falco S., Di Meo P., Di Sciascio G., Di Stefano R., Drendel B., Driutti A., Duginov VN., Eads M., Eggert N., Epps A., Esquivel J., Farooq M., Fatemi R., Ferrari C., Fertl M., Fiedler A., Fienberg AT., Fioretti A., Flay D., Foster SB., Friedsam H., Frlez E., Froemming NS., Fry J., Fu C., Gabbanini C., Galati MD., Ganguly S., Garcia A., Gastler DE., George J., Gibbons LK., Gioiosa A., Giovanetti KL., Girotti P., Gohn W., Gorringe T., Grange J., Grant S., Gray F., Haciomeroglu S., Hahn D., Halewood-Leagas T., Hampai D., Han F., Hazen E., Hempstead J., Henry S., Herrod AT., Hertzog DW., Hesketh G., Hibbert A., Hodge Z., Holzbauer JL., Hong KW., Hong R., Iacovacci M., Incagli M., Johnstone C., Johnstone JA., Kammel P., Kargiantoulakis M., Karuza M., Kaspar J., Kawall D., Kelton L., Keshavarzi A., Kessler D., Khaw KS., Khechadoorian Z., Khomutov NV., Kiburg B., Kiburg M., Kim O., Kim SC., Kim YI., King B., Kinnaird N., Korostelev M., Kourbanis I., Kraegeloh E., Krylov VA., Kuchibhotla A., Kuchinskiy NA., Labe KR., LaBounty J., Lancaster M., Lee MJ., Lee S., Leo S., Li B., Li D., Li L., Logashenko I., Campos AL., Luca A., Lukicov G., Luo G., Lusiani A., Lyon AL., MacCoy B., Madrak R., Makino K., Marignetti F., Mastroianni S., Maxfield S., McEvoy M., Merritt W., Mikhailichenko AA., Miller JP., Miozzi S., Morgan JP., Morse WM., Mott J., Motuk E., Nath A., Newton D., Nguyen H., Oberling M., Osofsky R., Ostiguy JF., Park S., Pauletta G., Piacentino GM., Pilato RN., Pitts KT., Plaster B., Pohlman N., Polly CC., Popovic M., Price J., Quinn B., Raha N., Ramachandran S., Ramberg E., Rider NT., Ritchie JL., Roberts BL., Rubin DL., Santi L., Sathyan D., Schellman H., Schlesier C., Schreckenberger A., Semertzidis YK., Shatunov YM., Shemyakin D., Shenk M., Sim D., Smith MW., Smith A., Soha AK., Sorbara M., Sttzckinger D., Stapleton J., Still D., Stoughton C., Stratakis D., Strohman C., Stuttard T., Swanson HE., Sweetmore G., Sweigart DA., Syphers MJ., Tarazona DA., Teubner T., Tewsley-Booth AE., Thomson K., Tishchenko V., Tran NH., Turner W., Valetov E., Vasilkova D., Venanzoni G., Volnykh VP., Walton T., Warren M., Weisskopf A., Welty-Rieger L., Whitley M., Winter P., Wolski A., Wormald M., Wu W., Yoshikawa C.

Autors Affiliation: Argonne Natl Lab, Lemont, IL USA; Boston Univ, Boston, MA 02215 USA; Brookhaven Natl Lab, Upton, NY 11973 USA; Budker Inst Nucl Phys, Novosibirsk, Russia; Inst Basic Sci IBS, Ctr Axion & Precis Phys CAPP, Daejeon, South Korea; Cornell Univ, Ithaca, NY USA; Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA; Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, Udine, Italy; Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy; Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy; Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy; Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy; Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy; CNR, Ist Nazl Ott, Pisa, Italy; James Madison Univ, Dept Phys & Astron, Harrisonburg, VA 22807 USA; Johannes Gutenberg Univ Mainz, Inst Phys & Cluster Excellence PRISMA, Mainz, Germany; Joint Inst Nucl Res, Dubna, Russia; Korea Adv Inst Sci & Technol KAIST, Dept Phys, Daejeon, South Korea; Univ Lancaster, Lancaster, England; Michigan State Univ, E Lansing, MI 48824 USA; North Cent Coll, Naperville, IL USA; Northern Illinois Univ, De Kalb, IL 60115 USA; Northwestern Univ, Evanston, IL USA; Regis Univ, Denver, CO USA; Scuola Normale Super Pisa, Pisa, Italy; Shanghai Jiao Tong Univ, Sch Phys & Astron, Shanghai, Peoples R China; Shanghai Jiao Tong Univ, Tsung Dao Lee Inst, Shanghai, Peoples R China; Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany; Univ Molise, Campobasso, Italy; Univ Cassino & Lazio Merid, Cassino, Italy; Univ Napoli, Naples, Italy; Univ Pisa, Pisa, Italy; Univ Roma Tor Vergata, Rome, Italy; Univ Trieste, Trieste, Italy; Univ Udine, Udine, Italy; UCL, Dept Phys & Astron, London, England; Univ Illinois, Urbana, IL USA; Univ Ke ntucky, Lexington, KY USA; Univ Liverpool, Liverpool, Merseyside, England; Univ Manchester, Dept Phys & Astron, Manchester, Lancs, England; Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA; Univ Michigan, Ann Arbor, MI 48109 USA; Univ Mississippi, University, MS 38677 USA; Univ Oxford, Oxford, England; Univ Rijeka, Rijeka, Croatia; Univ Texas Austin, Dept Phys, Austin, TX 78712 USA; Univ Virginia, Charlottesville, VA USA; Univ Washington, Seattle, WA 98195 USA; Novosibirsk State Univ, Novosibirsk, Russia; Oak Ridge Natl Lab, Oak Ridge, TN USA; Cockcroft Inst Accelerator Sci & Technol, Daresbury, England; Shanghai Key Lab Particle Phys & Cosmol, Shanghai, Peoples R China; Key Lab Particle Phys Astrophys & Cosmol MOE, Shanghai, Peoples R China; Lebedev Phys Inst, Moscow, Russia; NRNU MEPhI, Moscow, Russia; Shenzhen Technol Univ, Shenzhen, Peoples R China; Oregon State Univ, Corvallis, OR 97331 USA.

Abstract: We present the first results of the Fermilab National Accelerator Laboratory (FNAL) Muon g – 2 Experiment for the positive muon magnetic anomaly a(mu) (g(mu) – 2)/2. The anomaly is determined from the precision measurements of two angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes the difference frequency omega(a) between the spin-precession and cyclotron frequencies for polarized muons in a magnetic storage ring. The storage ring magnetic field is measured using nuclear magnetic resonance probes calibrated in terms of the equivalent proton spin precession frequency (omega) over tilde (p)’ in a spherical water sample at 34.7 degrees C. The ratio omega(a)/(omega) over tilde (p)’, together with known fundamental constants, determines a(mu)(FNAL) = 116 592 040(54) x 10(-11) (0.46 ppm). The result is 3.3 standard deviations greater than the standard model prediction and is in excellent agreement with the previous Brookhaven National Laboratory (BNL) E821 measurement. After combination with previous measurements of both mu(+) and mu(-), the new experimental average of a(mu)(Exp) = 116 592 061(41) x 10(-11) (0.35 ppm) increases the tension between experiment and theory to 4.2 standard deviations.

Journal/Review: PHYSICAL REVIEW LETTERS

Volume: 126 (14)      Pages from: 141801-1  to: 141801-11

More Information: We thank the Fermilab management and staff for their strong support of this experiment, as well as the tremendous support from our university and national laboratory engineers, technicians, and workshops. We are indebted to Akira Yamamoto, Lou Snydstrup, and Chien Pai who provided critical advice and engineering about the storage ring magnet and helped shepherd its transfer from Brookhaven to Fermilab. Greg Bock and Joe Lykken set the blinding clock and diligently monitored its stability. This result could not be interpreted without the worldwide theoretical effort to establish the standard model prediction, and in particular the recent work by the Muon g -2 Theory Initiative. The Muon g -2 Experiment was performed at the Fermi National Accelerator Laboratory, a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DEAC02-07CH11359. Additional support for the experiment was provided by the Department of Energy offices of High Energy Physics and Nuclear Physics (USA), the National Science Foundation (USA), the Istituto Nazionale di Fisica Nucleare (Italy), the Science and Technology Facilities Council (UK), the Royal Society (UK), the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreements No. 690835 and No. 734303, the National Natural Science Foundation of China (Grants No. 11975153 and No. 12075151), MSIP, NRF, and IBS-R017-D1 (Republic of Korea), and the German Research Foundation (DFG) through the Cluster of Excellence PRISMAthorn (EXC 2118/1, Project ID 39083149).
KeyWords: Hyperfine-structure; Meson Contributions; G-2; Weak
DOI: 10.1103/PhysRevLett.126.141801

Citations: 932
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-10-20
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here