Bioinspired self-similar all-dielectric antennas: probing the effect of secondary scattering centres by Raman spectroscopy

Year: 2020

Authors: Alessandri I., Carletti L., Ferroni M., De Angelis C., Vassalini I.

Autors Affiliation: INSTM UdR Brescia, Via Branze 38, I-25123 Brescia, Italy; Univ Brescia, Dept Informat Engn, Via Branze 38, I-2513 Brescia, Italy; CNR, INO, Via Branze 38, I-25123 Brescia, Italy; CNR, IMM, Via Gobetti 101, I-40129 Bologna, Italy; Univ Brescia, Mech & Ind Engn Dept, Via Branze 38, I-25123 Brescia, Italy.

Abstract: All-dielectric optical antennas offer unique advantages in fabrication of highly reproducible Raman probes and light management at the meso- and nano-scale. Hot-spot engineering is a key step for enhancing the local field and promoting light channelling from far- to near-field. However, unlike the case of plasmonic antennas, hot-spot design and implementation in all-dielectric systems is still largely underdeveloped. Inspired by building-up principles that govern absorption, trapping and scattering of visible light in a variety of biological structures and guided by finite element optical simulations, here we explored the potential of self-similar dielectric optical antennas in light coupling with Mie-type modes. The systems investigated were based on the combination of primary and secondary antennas, made of micron- and nano-sized TiO2 nanoshells. Different types of configurations, including randomly and hierarchically organized antennas were tested. Raman experiments revealed that hierarchically ordered structures offer superior SERS performances in terms of field enhancement and reproducibility in comparison to the randomly arranged counterparts, which are in turn more efficient, yet less reproducible, than simple micro-sized antennas taken as a reference. These results open the door to further investigations in view of developing next-generation platforms for SERS and photocatalysis.

Journal/Review: MATERIALS ADVANCES

Volume: 1 (7)      Pages from: 2443  to: 2449

More Information: This project was partially supported by the Biomass Hub Project-EU-Regione Lombardia POR FESR 2014-2020. L. C. was supported by Universita degli Studi di Padova (STARS-StG-PULSAr).
KeyWords: Plasmon-free Sers; Light; Resonators
DOI: 10.1039/d0ma00509f

Citations: 4
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-17
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here