Shock compression experiments using the DiPOLE 100-X laser on the high energy density instrument at the European x-ray free electron laser: Quantitative structural analysis of liquid Sn

Year: 2024

Authors: Gorman MG., McGonegle D., Smith RF., Singh S., Jenkins T., McWilliams RS., Albertazzi B., Ali SJ., Antonelli L., Armstrong MR., Baehtz C., Ball OB., Banerjee S., Belonoshko AB., Benuzzi-Mounaix A., Bolme CA., Bouffetier V., Briggs R., Buakor K., Butcher T., Cafiso SD., Cerantola V., Chantel J., Di Cicco A., Clarke S., Coleman AL., Collier J., Collins GW., Comley AJ., Coppari F., Cowan TE., Cristoforetti G., Cynn H., Descamps A., Dorchies F., Duff MJ., Dwivedi A., Edwards C., Eggert JH., Errandonea D., Fiquet G., Galtier E., Garcia AL., Ginestet H., Gizzi L., Gleason A., Goede S., Gonzalez JM., Harmand M., Hartley NJ., Heighway PG., Hernandez-Gomez C., Higginbotham A., Htzppner H., Husband RJ., Hutchinson TM., Hwang H., Lazicki AE., Keen DA., Kim J., Koester P., Konopkova Z., Kraus D., Krygier A., Labate L., Lee Y., Liermann HP., Mason P., Masruri M., Massani B., McBride EE., MGguire C., McHardy JD., Merkel S., Morard G., Nagler B., Nakatsutsumi M., Nguyen-Cong K., Norton AM., Oleynik II., Otzen C., Ozaki N., Pandolfi S., Peake DJ., Pelka A., Pereira KA., Phillips JP., Prescher C., Preston TR., Randolph L., Ranjan D., Ravasio A., Redmer R., Rips J., Santamaria-Perez D., Savage DJ., Schoelmerich M., Schwinkendorf JP., Smith J., Sollier A., Spear J., Spindloe C., Stevenson M., Strohm C., Suer TA., Tang M., Toncian M., Toncian T., Tracy SJ., Trapananti A., Tschentscher T., Tyldesley M., Vennari CE., Vinci T., Vogel SC., Volz TJ., Vorberger J., Walsh JPS., Wark JS., Willman JT., Wollenweber L., Zastrau U., Brambrink E., Appel K., McMahon MI.

Autors Affiliation: Lawrence Livermore Natl Lab, Livermore, CA 94550 USA; Atom Weap Estab AWE, Reading RG7 4PR, England; Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh EH9 3FD, Scotland; Univ Edinburgh, Ctr Sci Extreme Condit, Edinburgh EH9 3FD, Scotland; Ecole Polytech, Lab Utilisat Lasers Intenses LULI, CNRS, UMR 7605, F-91128 Palaiseau, France; Univ York, Sch Phys Engn & Technol, York YO10 5DD, England; Helmholtz Zentrum Dresden Rossendorf HZDR, Bautzner Landstr 400, D-01328 Dresden, Germany; STFC Rutherford Appleton Lab, Cent Laser Facil CLF, Harwell Campus, Didcot OX11 0QX, England; Nanjing Univ, Frontiers Sci Ctr Crit Earth Mat Cycling, Sch Earth Sci & Engn, Nanjing 210023, Peoples R China; Los Alamos Natl Lab, Los Alamos, NM USA; European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany; Univ Milano Bicocca, Dipartimento Sci Ambiente & Terra, Piazza Sci le4, I-20126 Milan, Italy; Univ Lille, Unite Mat & Transformat, CNRS, INRAE,Cent Lille,UMR 8207, F-59000 Lille, France; Univ Camerino, Sch Sci, Technol Phys Div, I-62032 Camerino, Italy; Univ Rochester, Lab Laser Energet LLE, 250 East River Rd, Rochester, NY 14623 USA; CNR, INO, Largo Enrico Fermi 6, I-50125 Florence, FI, Italy; Queens Univ Belfast, Sch Math & Phys, Univ Rd, Belfast BT7 1NN, North Ireland; Univ Bordeaux, CNRS, CEA, CELIA,UMR 5107, F-33400 Talence, France; Univ Valencia UV, Dept Fis Aplicada, ICMUV, C-Dr Moliner 50 Burjassot, E-46100 Valencia, Spain; Sorbonne Univ, Museum Natl Hist Nat, UMR CNRS 7590, IMPMC, F-75005 Paris, France; SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA; CNR, INO, Via G Moruzzi 1, I-56124 Pisa, Italy; Univ S Florida, Dept Phys, Tampa, FL 33620 USA; HESAM Univ, PIMM Arts & Metiers Inst Technol, CNRS, Cnam, 151 Blvd Hop, F-75013 Paris, France; Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England; Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany; STFC Rutherford Appleton Lab, ISIS Facil, Harwell Campus, Didcot OX11 0QX, England; Hanyang Univ, Dept Phys, 17 Haengdang Dong, Seoul 133791, South Korea; Univ Rostock, Inst Phys, D-18051 Rostock, Germany; Yonsei Univ, Dept Earth Syst Sci, 50 Yonsei Ro, Seoul 03722, South Korea; Univ Grenoble Alpes, Univ Savoie Mont Blanc, Univ Savoie Mt Blanc, CNRS,IRD,ISTerre, F-38000 Grenoble, France; Albert Ludwigs Univ Freiburg, Inst Geound Umweltnaturwissenschaften, Hermann-Herder-Str 5, D-79104 Freiburg, Germany; Osaka Univ, Grad Sch Engn, 2-1 Yamada Oka, Suita, Osaka 5650871, Japan; Univ Massachusetts Amherst, Dept Chem, 690 N Pleasant St Phys Sci Bldg, Amherst, MA 01003 USA; Paul Scherrer Inst, Forschungsstr 111, CH-5232 Villigen, Switzerland; CEA, DAM, DIF, F-91297 Arpajon, France; Univ Paris Saclay, CEA, Lab Mat Condit Extremes, F-91680 Bruyeres Le Chatel, France; 5241 Broad Branch Rd, Carnegie Sci Earth & Planets Lab, 5241 Broad Branch Rd,NW, Washington, DC 20015 USA.

Abstract: X-ray free electron laser (XFEL) sources coupled to high-power laser systems offer an avenue to study the structural dynamics of materials at extreme pressures and temperatures. The recent commissioning of the DiPOLE 100-X laser on the high energy density (HED) instrument at the European XFEL represents the state-of-the-art in combining x-ray diffraction with laser compression, allowing for compressed materials to be probed in unprecedented detail. Here, we report quantitative structural measurements of molten Sn compressed to 85(5) GPa and similar to 3500 K. The capabilities of the HED instrument enable liquid density measurements with an uncertainty of similar to 1 % at conditions which are extremely challenging to reach via static compression methods. We discuss best practices for conducting liquid diffraction dynamic compression experiments and the necessary intensity corrections which allow for accurate quantitative analysis. We also provide a polyimide ablation pressure vs input laser energy for the DiPOLE 100-X drive laser which will serve future users of the HED instrument.

Journal/Review: JOURNAL OF APPLIED PHYSICS

Volume: 135 (16)      Pages from: 165902-1  to: 165902-11

More Information: We acknowledge the European XFEL in Schenefeld, Germany, for provision of x-ray free electron laser beam time at the Scientific Instrument HED (High Energy Density Science) and would like to thank the staff for their assistance. The authors are indebted to the HIBEF user consortium for the provision of instrumentation and staff that enabled this experiment . The data are available upon reasonable request (10.22003/XFEL.EU-DATA-002740-00). Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and was supported by the Laboratory Directed Research and Development Program at LLNL (Project No. 21-ERD-032). Part of this work was performed under the auspices of the U.S. Department of Energy through the Los Alamos National Laboratory, operated by Triad National Security, LLC, for the National Nuclear Security Administration (Contract No. 89233218CNA000001). Research presented in this Letter was supported by the Department of Energy, Laboratory Directed Research and Development program at Los Alamos National Laboratory under Project No. 20190643DR and at SLAC National Accelerator Laboratory, under Contract No. DE-AC02-76SF00515. This work was supported by Grant Nos. EP/S022155/1 (M.I.M., M.J.D.) and EP/S025065/1 (J.S.W., D.J.P., P.G.W.) from the UK Engineering and Physical Sciences Research Council. J.D.M. is grateful to AWE for the award of CASE Studentship P030463429. P.G.H. acknowledges support from the Oxford Centre for High Energy Density Science (OxCHEDS) under PDRA Contract No. 30469604. E.E.M. and A.D. were supported by the U.K. AH was supported under EP/S023585/1. Research and Innovation Future Leaders Fellowship (No. MR/W008211/1) awarded to E.E.M. D.E. and D.S. from Univ. de Valencia acknowledge financial support by the Spanish Ministerio de Ciencia e Innovacion (MICINN) and the Agencia Estatal de Investigacion (No. MCIN/AEI/10.13039/501100011033) under Grant Nos. PGC2021-125518NB-I00 and PID2022-138076NB-C41 (cofinanced by EU FEDER funds), and by the Generalitat Valenciana under Grant Nos. CIPROM/2021/075, CIAICO/2021/241, and MFA/2022/007 (funded by Next Generation EU PRTR-C17.I1). N.J.H. and A.G. were supported by the DOE Office of Science, Fusion Energy Science under FWP No. 100182. G.W.C. and T.-A.S. recognizes support from NSF Physics Frontier Center Award No. PHY-2020249 and support by the U.S. Department of Energy National Nuclear Security Administration under Award No. DE-NA0003856, the University of ester, and the New York State Energy Research and Development Authority. B.M. and R.S.M. acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 101002868). K.A., K.B., Z.K., H.P.L., R.R., and T.T. acknowledge the DFG for support within the Research Unit FOR 2440. Y.L. is grateful for support from the Leader Researcher program (No. NRF-2018R1A3B1052042) of the Korean Ministry of Science and ICT (MSIT). S.M., H.G., and J.C. are funded by the European Union (ERC, HotCores, Grant No. 101054994). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. The work of D.K., D.R., J.R., and M.S. was supported by Deutsche Forschungsgemeinschaft (DFG-German Research Foundation) Project No. 505630685. S.P.; acknowledges support from the GOtoXFEL 2023 AAP from CNRS. For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version arising from this submission.
DOI: 10.1063/5.0201702

Citations: 1
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-10-20
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here