Moment of inertia and dynamical rotational response of a supersolid dipolar gas
Year: 2022
Authors: Roccuzzo S.M., Recati A., Stringari S.
Autors Affiliation: Univ Trento, INO CNR BEC Ctr, I-38123 Povo, Italy; Univ Trento, Dipartimento Fis, I-38123 Povo, Italy; Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Trento, Italy.
Abstract: We show that knowledge of the time-dependent response of a trapped gas, subject to a sudden rotation of a confining harmonic potential, allows for the determination of the moment of inertia of dipolar supersolid configurations. While in the presence of one-dimensional arrays of droplets the frequency of the resulting scissors oscillation provides accurate access to the value of the moment of inertia, two-dimensional-like configurations are characterized by low-frequency resonances in the rotating signal, reflecting the presence of significant rigid-body components in the rotational motion. Using the formalism of response-function theory and simulations based on the so-called extended time-dependent Gross-Pitaevskii equation, we point out the crucial role played by the low-frequency components in the determination of the moment of inertia and of its deviations from the irrotational value. We also propose a protocol based on the stationary rotation of the trap, followed by its sudden stop, which might provide a promising alternative to the experimental evaluation of the moment of inertia.
Journal/Review: PHYSICAL REVIEW A
Volume: 105 (2) Pages from: 023316-1 to: 023316-7
More Information: We thank G. Biagioni, F. Ferlaino, G. Modugno, M. Norcia, and E. Poli for insightful discussions. This work was supported by Q@TN (the joint laboratory between the University of Trento, Fondazione Bruno Kessler, the National Institute for Nuclear Physics, and the National Research Council), the Provincia Autonoma di Trento, and the Italian MUR under PRIN2017 project CEnTraL (Protocol No. 20172H2SC4).KeyWords: scissors mode; superfluidityDOI: 10.1103/PhysRevA.105.023316Citations: 15data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-12-01References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here