Enhanced laser-driven proton acceleration via improved fast electron heating in a controlled pre-plasma
Year: 2021
Authors: Gizzi LA., Boella E., Labate L., Baffigi F., Bilbao PJ., Brandi F., Cristoforetti G., Fazzi A., Fulgentini L., Giove D., Koester P., Palla D., Tomassini P.
Autors Affiliation: CNR, INO, Intense Laser Irradiat Lab, Pisa, Italy; INFN, Pisa, Italy; Univ Lancaster, Phys Dept, Lancaster LA1 4YW, England; Sci Tech Daresbury, Cockcroft Inst, Keckwick Lane, Warrington WA4 4AD, Cheshire, England; Politecn Milan, Dipartimento Energia, Milan, Italy; INFN, Sez Milano, Milan, Italy; INFN, LASA, Segrate, Italy.
Abstract: The interaction of ultraintense laser pulses with solids is largely affected by the plasma gradient at the vacuum–solid interface, which modifies the absorption and ultimately, controls the energy distribution function of heated electrons. A micrometer scale-length plasma has been predicted to yield a significant enhancement of the energy and weight of the fast electron population and to play a major role in laser-driven proton acceleration with thin foils. We report on recent experimental results on proton acceleration from laser interaction with foil targets at ultra-relativistic intensities. We show a threefold increase of the proton cut-off energy when a micrometer scale-length pre-plasma is introduced by irradiation with a low energy femtosecond pre-pulse. Our realistic numerical simulations agree with the observed gain of the proton cut-off energy and confirm the role of stochastic heating of fast electrons in the enhancement of the accelerating sheath field.
Journal/Review: SCIENTIFIC REPORTS
Volume: 11 Pages from: 13728 to: 13728
More Information: This project has received funding from the CNR funded Italian research Network ELI-Italy (D. M. No.631 08.08.2016) and from the L3IA INFN Experiment of CSN5. We gratefully acknowledge support from CLF, STFC (UK) for in kind contribution to the experimental set up described in this experiment. E.B. acknowledges the OSIRIS Consortium, consisting of UCLA and IST, for the use of the OSIRIS 4.0 framework and the visXD framework. Simulations were performed on the supercomputers ARCHER (EPCC, UK) under Plasma HEC Consortium EPSRC grants EP/L000237/1 and EP/R029148/1 and Marconi-Broadwell (CINECA, Italy) under PRACE allocation.KeyWords: ion-acceleration; irradiation target; pulse; beams; relativistic laser-plasma interaction; proton accelerationDOI: 10.1038/s41598-021-93011-3Citations: 19data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-17References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here