First combined application of photoacoustic and optical techniques to the study of an historical oil painting
Year: 2021
Authors: Dal Fovo A., Tserevelakis G. J., Klironomou E., Zacharakis G., Fontana R.
Autors Affiliation: CNR, Ist Nazl Ott, INO, Largo E Fermi 6, I-50125 Florence, Italy; Fdn Res & Technol Hellas IESL FORTH, Inst Elect Struct & Laser, Iraklion, Greece.
Abstract: Optical techniques are routinely applied in artworks analysis to obtain structural, morphological, and compositional information on the examined object in a non-invasive way. However, the complex structure of paintings, which can be sketched as multi-layer systems often including non-transparent layers, can hamper the penetration of the optical probe, making the non-invasive sectioning particularly challenging. Recently, cutting-edge photoacoustic (PA) methods have been tested on painted mock-ups to overcome the above-described detection limit of pure optical techniques, giving promising results. In this work, for the first time, PA measurements were taken on a nineteenth-century painting. Using a multi-modal approach, the effectiveness of the technique in revealing hidden features and providing cross-sectional measurements was assessed in comparison with other well-established pure optical techniques, namely multispectral Vis–NIR reflectography, UV imaging, fibre optics reflectance spectroscopy (FORS), optical coherence tomography (OCT), and laser scanning microprofilometry. Data integration allowed highlighting the capability of each method, proving the effectiveness of the proposed multi-modal approach. This successful application of the PA method on a real case study paves the way for its introduction among the other non-invasive techniques for paintings analysis.
Journal/Review: EUROPEAN PHYSICAL JOURNAL PLUS
Volume: 136 (7) Pages from: 757-1 to: 757-16
More Information: This research was supported by LASERLAB-EUROPE (grant agreement no. 871124, European Union´s Horizon 2020 research and innovation programme); Regione Toscana (POR FSE 2014-2020, “Giovanisi”, Intervention Program “CNR4C”, CUP B15J19001040004), PpQSense Srl.KeyWords: photoacoustics
optical coherence tomography
microprofilometry
Vis-NIR multispectral reflectography
painting
cross-sectional analysisDOI: 10.1140/epjp/s13360-021-01739-8Citations: 14data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-17References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here