Interaction-induced decay of a heteronuclear two-atom system
Year: 2015
Authors: Xu P., Yang JH., Liu M., He XD., Zeng Y., Wang KP., Wang J., Papoular DJ., Shlyapnikov GV., Zhan MS.
Autors Affiliation: Chinese Acad Sci, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China; Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan Natl Lab Optoelect, Wuhan 430071, Peoples R China; Chinese Acad Sci, Ctr Cold Atom Phys, Wuhan 430071, Peoples R China; Univ Chinese Acad Sci, Sch Phys, Beijing 100049, Peoples R China; Univ Trento, INO CNR, BEC Ctr, I-38123 Povo, Italy; Univ Trento, Dipartimento Fis, I-38123 Povo, Italy; Univ Paris 11, CNRS, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France; Univ Amsterdam, Van der Waals Zeeman Inst, NL-1098 XH Amsterdam, Netherlands; Russian Quantum Ctr, Skolkovo 143025, Moscow Region, Russia.
Abstract: Two-atom systems in small traps are of fundamental interest for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of 87Rb and 85Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. This experimental method allows us to single out a particular relaxation process thus provides an extremely clean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates.
Journal/Review: NATURE COMMUNICATIONS
Volume: 6 Pages from: 7803-1 to: 7803-8
More Information: We acknowledge fruitful discussions with Jiaming Li, Antoine Browaeys and Philippe Grangier. This work has been supported by the National Basic Research Program of China under Grant No. 2012CB922101 and the National Natural Science Foundation of China under Grant Nos. 11104320 and 11104321. G.V.S. acknowledges support from IFRAF and from the Dutch Foundation FOM. D.J.P. and G.V.S. emphasize that the research leading to their results in this paper has received funding from the European Research Council under European Community’s Seventh Framework Programme (FR7/2007-2013 Grant Agreement no. 341197).KeyWords: Magnetooptical Trap; Controlled Collisions; Ultracold Collisions; Feshbach Resonances; Cold Collisions; Atoms; Molecules; Lattice; EntanglementDOI: 10.1038/ncomms8803Citations: 29data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-17References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here