High-Precision Quantum-Enhanced Gravimetry with a Bose-Einstein Condensate

Year: 2020

Authors: Szigeti SS., Nolan S.P., Close JD., Haine SA.

Autors Affiliation: Australian Natl Univ, Res Sch Phys, Dept Quantum Sci, Canberra, ACT 2601, Australia; CNR, INO, QSTAR, Largo Enrico Fermi 2, I-50125 Florence, Italy; LENS, Largo Enrico Fermi 2, I-50125 Florence, Italy.

Abstract: We show that the inherently large interatomic interactions of a Bose-Einstein condensate (BEC) can enhance the sensitivity of a high precision cold-atom gravimeter beyond the shot-noise limit (SNL). Through detailed numerical simulation, we demonstrate that our scheme produces spin-squeezed states with variances up to 14 dB below the SNL, and that absolute gravimetry measurement sensitivities between two and five times below the SNL are achievable with BECs between 10(4) and 10(6) in atom number. Our scheme is robust to phase diffusion, imperfect atom counting, and shot-to-shot variations in atom number and laser intensity. Our proposal is immediately achievable in current laboratories, since it needs only a small modification to existing state-of-the-art experiments and does not require additional guiding potentials or optical cavities.

Journal/Review: PHYSICAL REVIEW LETTERS

Volume: 125 (10)      Pages from: 100402  to: 100402

More Information: We acknowledge fruitful discussions with Chris Freier, Kyle Hardman, Joseph Hope, Nicholas Robins, and Paul Wigley. This project was partially funded by a Defence Science and Technology Group Competitive Evaluation Research Agreement, Project MyIP: 7333. S. S. S. was supported by an Australian Research Council Discovery Early Career Researcher Award (DECRA), Project No. DE200100495. S. P. N. acknowledges funding from the H2020 QuantERA ERA-NET Cofund in Quantum Technologies, project CEBBEC. This research was undertaken with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian Government.
KeyWords: ATOM INTERFEROMETER; GRAVITATIONAL ACCELERATION; ENTANGLEMENT; STATES; NOISE; REPRESENTATION; GASES
DOI: 10.1103/PhysRevLett.125.100402

Citations: 47
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-17
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here