Tuning the ultrafast response of fano resonances in halide perovskite nanoparticles

Year: 2020

Authors: Franceschini P., Carletti L., Pushkarev AP., Preda F., Perri A., Tognazzi A., Ronchi A., Ferrini G., Pagliara S., Banfi F., Polli D., Cerullo G., De Angelis C., Makarov SV., Giannetti C.

Autors Affiliation: ITMO Univ, St Petersburg 197101, Russia; Politecn Milan, Dipartimento Fis, I-20133 Milan, Italy; NIREOS SRL, I-20158 Milan, Italy; Univ Brescia, Dept Informat Engn, I-25123 Brescia, Italy; Consiglio Nazl Ric CNR, Natl Inst Opt INO, I-25123 Brescia, Italy; Univ Cattolica Sacro Cuore, Dept Math & Phys, I-25121 Brescia, Italy; Univ Cattolica Sacro Cuore, ILAMP Interdisciplinary Labs Adv Mat Phys, I-25121 Brescia, Italy; Katholieke Univ Leuven, Dept Phys & Astron, KU Leuven, B-3001 Leuven, Belgium; Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, Inst Lumiere Mat,FemtoNanoOpt Grp, F-69622 Villeurbanne, France; Univ Padua, Dept Informat Engn, I-35131 Padua, Italy.

Abstract: The full control of the fundamental photophysics of nanosystems at frequencies as high as few THz is key for tunable and ultrafast nanophotonic devices and metamaterials. Here we combine geometrical and ultrafast control of the optical properties of halide perovskite nanoparticles, which constitute a prominent platform for nanophotonics. The pulsed photoinjection of free carriers across the semiconducting gap leads to a subpicosecond modification of the far-field electromagnetic properties that is fully controlled by the geometry of the system. When the nanoparticle size is tuned so as to achieve the overlap between the narrowband excitons and the geometry-controlled Mie resonances, the ultrafast modulation of the transmittivity is completely reversed with respect to what is usually observed in nanoparticles with different sizes, in bulk systems, and in thin films. The interplay between chemical, geometrical, and ultrafast tuning offers an additional control parameter with impact on nanoantennas and ultrafast optical switches.

Journal/Review: ACS NANO

Volume: 14 (10)      Pages from: 13602  to: 13610

More Information: P.F. and C.G acknowledge financial support from MIUR through PRIN 2015 (Prot. 2015C5SEJJ001) and PRIN 2017 (Prot. 20172H2SC4) Programs. G.F., S.P., and C.G. acknowledge support from Universita Cattolica del Sacro Cuore through Grants D.1, D.2.2, and D.3.1. L.C. acknowledges STARS StG project PULSAR S.M and A.P. acknowledge the Russian Science Foundation (project 20-73-10183). F.B. acknowledges financial support from the IDEXLYON Project-Programme Investissements dīAvenir (Grant ANR-16 -IDEX-0005), France. NIREOS acknowledges financial support from the European Unionīs Horizon 2020 Research and Innovation Programme under Grant Agreement No. 814492 (SimDOME).
KeyWords: Fano resonance; halide perovskites nanoparticles; ultrafast photophysics; nanophotonics; Mie resonances
DOI: 10.1021/acsnano.0c05710

Citations: 12
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-10-27
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here