Laser-Induced Frequency Tuning of Fourier-Limited Single-Molecule Emitters
Year: 2020
Authors: Maja Colautti, Francesco S. Piccioli, Zoran Ristanovic,́ Pietro Lombardi, Amin Moradi, Subhasis Adhikari, Irena Deperasinska, Boleslaw Kozankiewicz, Orrit Michel., Toninelli C.
Autors Affiliation: Natl Inst Opt CNR INO, I-50019 Sesto Fiorentino, Italy; European Lab Nonlinear Spect LENS, I-50019 Sesto Fiorentino, Italy; LION, Huygens Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands; Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland.
Abstract: The local interaction of charges and light in organic solids is the basis of distinct and fundamental effects. We here observe, at the single-molecule scale, how a focused laser beam can locally shift by hundreds of times their natural line width and, in a persistent way, the transition frequency of organic chromophores cooled at liquid helium temperature in different host matrices. Supported by quantum chemistry calculations, the results can be interpreted as effects of a photoionization cascade, leading to a stable electric field, which Stark-shifts the molecular electronic levels. The experimental observation is then applied to a common challenge in quantum photonics, i.e., the independent tuning and synchronization of close-by quantum emitters, which is desirable for multiphoton experiments. Five molecules that are spatially separated by about 50 μm and originally 20 GHz apart are brought into resonance within twice their line width. This tuning method, which does not require additional fabrication steps, is here independently applied to multiple emitters, with an emission line width that is only limited by the spontaneous decay and an inhomogeneous broadening limited to 1 nm. The system hence shows promise for photonic quantum technologies.
Journal/Review: ACS NANO
Volume: 14 (10) Pages from: 13584 to: 13592
More Information: Nico Verhart is acknowledged for performing the initial experiments on DBT in naphthalene. C.T. wishes to thank P. Foggi and F. S. Cataliotti for useful discussions. The authors acknowledge the EraNET Cofund Initiative QuantERA under the European Union´s Horizon 2020 Research and Innovation Programme (ORQUID, grant agreement no. 731473). The Netherlands Organization for Scientific Research and NWOPhysics are acknowledged for funding for A.M., S.A., and Z.R. Theoretical calculations were performed at the Interdisciplinary Centre of Mathematical and Computer Modelling (ICM) of Warsaw University under the computational grant no. G-3210.KeyWords: single molecule, optical tuning, organic semiconductors, single-photon sources, Stark shiftDOI: 10.1021/acsnano.0c05620Citations: 16data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-10-27References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here