Fragmentation instabilities of a liquid drop falling in a miscible fluid

Anno: 2014

Autori: Buah-Bassuah P.K., Residori S., Arecchi F.T.

Affiliazione autori: Laser and Fibre Optics Centre, Department of Physics, University of Cape Coast, Cape Coast, Ghana; Institut Non Linéaire de Nice, 1361 Route des Lucioles, Valbonne-Sophia Antipolis, France; Physics Department, University of Florence, CNR-Istituto Nazionale di Ottica Applicata, Largo Enrico Fermi 6, Florence, Italy

Abstract: We report a set of experimental investigations on the break-up of a liquid drop when falling in a miscible solvent, with the density difference being positive, or negative, or zero. Non-dimensional numbers, derived from the characteristic times of the drop evolution, account for the hydrodynamic instabilities and the self-similar character of the fragmentation process. The role of the initial surface tension at the air-drop interface is explored, leading to scaling laws for the drop volume V and the various height h reached by the drop before it fragments into smaller droplets. From the first break-up to the onset of diffusion, the fragmentation process is shown to have a fractal structure, which is associated to universal power laws for h and V during the dynamical processes associated to the break-up phenomena.

Giornale/Rivista: AFRICAN REVIEW OF PHYSICS

Volume: 9      Da Pagina: 53  A: 61

Parole chiavi: Technology; Steel; Vortex rings

Citazioni: 1
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2024-04-21
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui