PLANT: A Method for Detecting Changes of Slope in Noisy Trajectories

Anno: 2018

Autori: Sosa-Costa A., Piechocka IK., Gardini L., Pavone FS., Capitanio M., Garcia-Parajo MF., Manzo C.

Affiliazione autori: [Sosa-Costa, Alberto; Piechocka, Izabela K.; Garcia-Parajo, Maria F.; Manzo, Carlo] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona, Spain.
[Gardini, Lucia; Pavone, Francesco S.; Capitanio, Marco] LENS European Lab Nonlinear Spect, Sesto Fiorentino, Italy.
[Gardini, Lucia; Pavone, Francesco S.] CNR, Natl Inst Opt, Florence, Italy.
[Pavone, Francesco S.; Capitanio, Marco] Univ Florence, Dept Phys & Astron, Sesto Fiorentino, Italy.
[Garcia-Parajo, Maria F.] ICREA, Barcelona, Spain.
[Manzo, Carlo] Univ Vic, Univ Cent Catalunya, Vic, Spain.
[Piechocka, Izabela K.] Polish Acad Sci, Inst Fundamental Technol Res, Warsaw, Poland.

Abstract: Time traces obtained from a variety of biophysical experiments contain valuable information on underlying processes occurring at the molecular level. Accurate quantification of these data can help explain the details of the complex dynamics of biological systems. Here, we describe PLANT (Piecewise Linear Approximation of Noisy Trajectories), a segmentation algorithm that allows the reconstruction of time-trace data with constant noise as consecutive straight lines, from which changes of slopes and their respective durations can be extracted. We present a general description of the algorithm and perform extensive simulations to characterize its strengths and limitations, providing a rationale for the performance of the algorithm in the different conditions tested. We further apply the algorithm to experimental data obtained from tracking the centroid position of lymphocytes migrating under the effect of a laminar flow and from single myosin molecules interacting with actin in a dual-trap force-clamp configuration.


Volume: 114 (9)      Da Pagina: 2044  A: 2051

Parole chiavi: tethered particle motion; change-point detection; optical tweezers; cell-adhesion; unknown point
DOI: 10.1016/j.bpj.2018.04.006

Citazioni: 2
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2022-08-14
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui