Spin-Orbit Charge Recombination Intersystem Crossing in Phenothiazine-Anthracene Compact Dyads: Effect of Molecular Conformation on Electronic Coupling, Electronic Transitions, and Electron Spin Polarizations of the Triplet States

Anno: 2018

Autori: Hou YQ.; Biskup T.; Rein S.; Wang ZJ.; Bussotti L.; Russo N.; Foggi P.; Zhao JZ.; Di Donato M.; Mazzone G.; Weber S.

Affiliazione autori: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, West Campus, 2 Ling Gong Rd., Dalian, 116024, China; Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, Freiburg, 79104, Germany; LENS (European Laboratory for Non-Linear Spectroscopy), Via N. Carrara 1, Sesto Fiorentino, I-50019, Italy; Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, I-87036, Italy; INO, Istituto Nazionale di Ottica, Largo Enrico Fermi 6, Florence, I-50125, Italy; Department of Chemistry, Biology and Biotechnology University of Perugua, Via Elce di Sotto 8, Perugia, I-06123, Italy

Abstract: Phenothiazine (PTZ)-anthracene (An) compact electron donor/acceptor dyads were synthesized. The molecular conformation was constrained by rotation restriction to achieve an orthogonal geometry between the electron donor (PTZ) and the electron acceptor (An), with the aim to enhance the spin-orbit charge-transfer intersystem crossing (SOCT-ISC). The substitution positions on the PTZ and An moieties were varied to attain dyads with different mutual orientations of the donor/acceptor as well as different rotation-steric hindrances. The electronic coupling strengths between the electron donor and the acceptor were quantified with the matrix elements (V-DA, 0.04-0.18 eV); the smallest value was observed for the dyad with orthogonal geometry. Charge-transfer absorption and fluorescence emission bands were observed for the dyads, for which the intensity varied, manifested by the V-DA values. The fluorescence of the An moiety was significantly quenched in the dyads, efficient ISC, and the formation of the triplet state were confirmed with nanosecond transient absorption spectroscopy (Phi(Delta) = 65%, tau(T) = 209 mu s). The rotation-steric hindrance was analyzed with potential energy curves, and PTZ was found to be an ideal electron donor to attain SOCT ISC. Time-resolved electron paramagnetic resonance spectra revealed the electron-spin polarization (ESP) of the triplets of the dyads, which is drastically different from that of An, thus confirming the SOCT ISC mechanism. Moreover, we found that the ESP patterns of the dyads strongly depend on the topological features of the molecules and the structure of the electron donor, thus indicating that the relationship between the molecular conformation and the ESP parameters of the triplet state of the dyads cannot be described solely by the orthogonal geometry, as was previously observed.

Giornale/Rivista: JOURNAL OF PHYSICAL CHEMISTRY C

Volume: 122 (49)      Da Pagina: 27850  A: 27865

Maggiori informazioni: J.Z. thanks the NSFC (214730202, 21673031, 21761142005, 21273028, 21603021, 21576043 and 21421005), the Fundamental Research Funds for the Central Universities (DUT16TD25, DUT15ZD224, DUT2016TB12) for financial support. G.M. and N.R. gratefully acknowledge the Università della Calabria for financial support. S.W. and T.B. thank Sabine Richert (University of Freiburg) for fruitful discussions.
Parole chiavi: Absorption spectroscopy; Anthracene; Charge transfer; Chemical reactions; Conformations; Electrons; Electrospinning; Fluorescence; Geometry; Insecticides; Magnetic moments; Paramagnetic resonance; Potential energy; Spin dynamics; Spin polarization, Charge-transfer absorption; Electron spin polarization; Electronic transition; Inter-system crossings; Molecular conformation; Nanosecond transient absorption; Potential energy curves; Time-resolved electron paramagnetic resonances, Electron spin resonance spectroscopy
DOI: 10.1021/acs.jpcc.8b08965

Citazioni: 58
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2022-09-25
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui