Risultati scientifici

p-Type copper aluminum oxide thin films for gas-sensing applications

Anno: 2015

Autori: Baratto C., Kumar R., Faglia G. P., Vojisavljevic K., Malic B.

Affiliazione autori: CNR-INO SENSOR Lab., Via Branze 45, 25133 Brescia, Italy; University of Brescia, Department of Information Engineering, Via Valotti, 9, 25133 Brescia, Italy; Jozef Stefan Institute, Electronic Ceramics Department, Jamova Cesta 39, 1000 Ljubljana, Slovenia

Abstract: In this study we deposited new, ternary thin films of copper aluminum oxide with p-type and n-type behavior using RF magnetron sputtering for use as chemical gas sensors. p-Type materials are known to be good catalysts and can be combined with the well-known n-type materials for chemiresistive sensors application. Copper aluminum oxide in the delafossite phase CuAlO2 is a ternary oxide that has generated interest as a transparent p-type conducting material, while in the spinel phase CuAl2O4 is known to be n-type. We demonstrated that thin films of copper aluminum oxide with the proper resistance can be successfully applied as p-and n-type resistive gas sensors for ozone detection. We have studied the sputtering deposition conditions from a CuAlO2 sintered target by changing the substrate temperature in inert Ar atmosphere. In addition, post-deposition annealing in O-2 atmospheres was also tested. XRD, SEM and Raman investigations were used to characterize the thin films. Selected films with mixed phases of CuAlO2, CuAl2O4 and CuO were tested for gas sensing as resistive chemical sensors, showing promising results with ozone, acetone and ethanol. (C) 2014 Elsevier B.V. All rights reserved.


Volume: 209      Da Pagina: 287  A: 296

Maggiori informazioni: The research leading to these results has received funding from the European Communities 7th Framework Programme under grant agreement NMP3-LA-2010-246334. The financial support of the European Commission is therefore gratefully acknowledged. KV and BM acknowledge the financial support of the Slovenian Research Agency (P2-0105).
Parole chiavi: Chemical gas sensor; Copper aluminum oxide; Delafossite; Spinel; Sputtering
DOI: 10.1016/j.snb.2014.11.116

Citazioni: 28
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2021-12-05
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more