Toward the optimization of double-pulse LIBS underwater: effects of experimental parameters on the reproducibility and dynamics of laser-induced cavitation bubble

Anno: 2012

Autori: Cristoforetti G., Tiberi M., Simonelli A., Marsili P., Giammanco F.

Affiliazione autori: ILIL, National Institute of Optics, Research Area of National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; Department of Physics “E. Fermi,” University of Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy

Abstract: Double-pulse laser-induced breakdown spectroscopy (LIBS) was recently proposed for the analysis of underwater samples, since it overcomes the drawbacks of rapid plasma quenching and of large continuum emission, typical of single-pulse ablation. Despite the attractiveness of the method, this approach suffers nevertheless from a poor spectroscopic reproducibility, which is partially due to the scarce reproducibility of the cavitation bubble induced by the first laser pulse, since pressure and dimensions of the bubble strongly affect plasma emission. In this work, we investigated the reproducibility and the dynamics of the cavitation bubble induced on a solid target in water, and how they depend on pulse duration, energy, and wavelength, as well as on target composition. Results are discussed in terms of the effects on the laser ablation process produced by the crater formation and by the interaction of the laser pulse with floating particles and gas bubbles. This work, preliminary to the optimization of the spectroscopic signal, provides an insight of the phenomena occurring during laser ablation in water, together with useful information for the choice of the laser source to be used in the apparatus. (C) 2012 Optical Society of America

Giornale/Rivista: APPLIED OPTICS

Volume: 51 (7)      Da Pagina: B30  A: B41

Maggiori informazioni: F. Giammanco, M. Tiberi, A Simonelli, and P. Marsili wish to acknowledge funding from the project NABLA (Decree n.4508, September 1, 2010, by Regione Toscana-Italy, PAR FAS 2007-2013 funds, Action 1.1.a.3).
DOI: 10.1364/AO.51.000B30

Citazioni: 26
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2022-05-22
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui