Curved spacetime from interacting gauge theories

Anno: 2019

Autori: Butera S., Westerberg N., Faccio D., Ohberg P.

Affiliazione autori: Univ Trento, INO CNR BEC Ctr, I-38123 Povo, Italy;‎ Univ Trento, Dipartimento Fis, I-38123 Povo, Italy;‎ Heriot Watt Univ, SUPA, Inst Photon & Quantum Sci, Edinburgh EH14 4AS, Midlothian, Scotland;‎ Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland

Abstract: Phonons in a Bose-Einstein condensate can be made to behave as if they propagate in curved spacetime by controlling the condensate flow speed. Seemingly disconnected to this, artificial gauge potentials can be induced in charge neutral atomic condensates by for instance coupling two atomic levels to a laser field. In this work, we connect these two worlds and show that synthetic interacting gauge fields, i.e. density-dependent gauge potentials, induce a non-trivial spacetime structure for the phonons. Whilst the creation of effective horizons for phonons solely depends on the flow speed of the condensate, this allows for the creation of new spacetime geometries which can be easily designed by tuning the transverse laser phase. By exploiting this new degree of freedom we show that effectively charged phonons in 2+1 dimensions can be simulated, which behave as if they move under the influence of both a gravitational and an electromagnetic field.


Volume: 36 (3)      Da Pagina: 034002-1  A: 034002-13

Maggiori informazioni: SB gratefully acknowledges financial support by the Julian Schwinger Foundation. NW acknowledges support from the EPSRC CM-CDT Grant EP/L015110/1, PO acknowledges support from EPSRC EP/M024636/1. DF acknowledges financial support from the European Research Council under the European Unions Seventh Framework Programme (FP/20072013)/ERC GA 306559 and the EPSRC (Grant EP/P006078/2).
Parole chiavi: analogue gravity; artificial gauge fields; effective spacetime; effective charged phonons; Bose-Einstein condensate
DOI: 10.1088/1361-6382/aaf9f6

Citazioni: 4
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2023-09-17
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui