Quantum motion of a squeezed mechanical oscillator attained via an optomechanical experiment

Anno: 2020

Autori: Vezio P.; Chowdhury A.; Bonaldi M.; Borrielli A.; Marino F.; Morana B.; Prodi G.A.; Sarro P.M.; Serra E.; Marin F.

Affiliazione autori: European Laboratory for Non-linear Spectroscopy (LENS), Via Carrara 1, I-50019 Sesto Fiorentino (FI), Italy; CNR-INO, Largo Enrico Fermi 6, I-50125 Firenze, Italy; Institute of Materials for Electronics and Magnetism, Nanoscience-Trento-FBK Division, 38123 Povo, Trento, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Trento Institute for Fundamental Physics and Application, I-38123 Povo, Trento, Italy; INFN, Sezione di Firenze, Via Sansone 1, I-50019, Sesto Fiorentino (FI), Italy; Department of Microelectronics and Computer Engineering /ECTM/DIMES, Delft University of Technology, Feldmanweg 17, 2628 CT Delft, The Netherlands; Dipartimento di Matematica, Università di Trento, I-38123 Povo, Trento, Italy; Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy.

Abstract: We experimentally investigate a mechanical squeezed state realized in a parametrically modulated membrane resonator embedded in an optical cavity. We demonstrate that a quantum characteristic of the squeezed dynamics can be revealed and quantified even in a moderately warm oscillator, through the analysis of motional sidebands. We provide a theoretical framework for quantitatively interpreting the observations and present an extended comparison with the experiment. A notable result is that the spectral shape of each motional sideband provides a clear signature of a quantum mechanical squeezed state without the necessity of absolute calibrations, in particular in the regime where residual fluctuations in the squeezed quadrature are reduced below the zero-point level.

Giornale/Rivista: PHYSICAL REVIEW A

Volume: 102 (5)      Da Pagina: 053505-1  A: 053505-10

Maggiori informazioni: Research was performed within the Project QuaSeRT funded by the QuantERA ERA-NET Cofund in Quantum Technologies implemented within the European Union´s Horizon 2020 Programme. The research has been partially supported by INFN (HUMOR project).
Parole chiavi: Cavity Optomechanics, Quantum Optics
DOI: 10.1103/PhysRevA.102.053505

Citazioni: 8
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2024-07-21
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui