Collisionless drag for a one-dimensional two-component Bose-Hubbard model
Anno: 2021
Autori: Contessi Daniele; Romito Donato; Rizzi Matteo; Recati Alessio
Affiliazione autori: Univ Trento, Dipartimento Fis, I-38123 Povo, Italy; INO CNR BEC Ctr, I-38123 Povo, Italy; Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England; Forschungszentrum Julich, Peter Grunberg Inst PGI 8, Inst Quantum Control, D-52425 Julich, Germany; Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany.
Abstract: We theoretically investigate the elusive Andreev-Bashkin collisionless drag for a two-component one-dimensional Bose-Hubbard model on a ring. By means of tensor network algorithms, we calculate the superfluid stiffness matrix as a function of intra- and interspecies interactions and of the lattice filling. We then focus on the most promising region close to the so-called pair-superfluid phase, where we observe that the drag can become comparable with the total superfluid density. We elucidate the importance of the drag in determining the long-range behavior of the correlation functions and the spin speed of sound. In this way, we are able to provide an expression for the spin Luttinger parameter K-S in terms of drag and the spin susceptibility. Our results are promising in view of implementing the system by using ultracold Bose mixtures trapped in deep optical lattices, where the size of the sample is of the same order of the number of particles we simulate. Importantly, the mesoscopicity of the system, far from being detrimental, appears to favor a large drag, avoiding the Berezinskii-Kosterlitz-Thouless jump at the transition to the pair-superfluid phase which would reduce the region where a large drag can be observed.
Giornale/Rivista: PHYSICAL REVIEW RESEARCH
Volume: 3 (2) Da Pagina: L022017-1 A: L022017-7
Parole chiavi: SuperfluidityDOI: 10.1103/PhysRevResearch.3.L022017Citazioni: 13dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2025-05-04Riferimenti tratti da Isi Web of Knowledge: (solo abbonati) Link per visualizzare la scheda su IsiWeb: Clicca quiLink per visualizzare la citazioni su IsiWeb: Clicca qui