Scientific Results

Stability analysis of second order pulsed Raman laser in dispersion managed systems

Year: 2011

Authors: Kalyoncu S.K., Gao S., Tien E.-K., Huang Y., Yildirim D., Adas E., Wabnitz S., Boyraz O.

Autors Affiliation: EECS Department, University of California, Irvine, 92697, United States; Dipartimento di Elettronica per l\’Automazione, Universit√† di Brescia, 25123 Brescia, Italy; EE Department, Istanbul Sehir University, Istanbul, Turkey

Abstract: Wavelength tunable synchronous pulse sources are highly desirable for spectroscopy and optical diagnostics. The common method to generate short pulses in the fiber is the use of nonlinear induced spectral broadening which result in soliton shaping in anomalous dispersion regime. However, to generate ultra-short pulses, broadband gain mechanism is also required. In recent years, Raman fiber lasers have retrieved strong interest due to their capability of serving as pump sources in gain-flattened amplifiers for optical communication systems. The fixed-wavelength Raman lasers have been widely studied in the last years, but recently, much focus has been on the multi wavelength tunable Raman fiber lasers which generate output Stokes pulses in a broad wavelength range by so called cascaded stimulated Raman scattering. In this paper we investigate synchronous 1st and 2nd order pulsed Raman lasers that can achieve frequency spacing of up to 1000cm-1 that is highly desired for CARS microscopy. In particular, analytical and numerical analysis of pulsed stability derived for Raman lasers by using dispersion managed telecom fibers and pumped by 1530nm fiber lasers. We show the evolution of the 1st and 2nd order Stokes signals at the output for different pump power and SMF length (determines the net anomalous dispersion) combinations. We investigated the stability of dispersion managed synchronous Raman laser up to second order both analytically and numerically. The results show that the stable 2nd order Raman Stokes pulses with 0.04W to 0.1W peak power and 2ps to 3.5ps pulse width can be achieved in dispersion managed system.

Conference title:

More Information: This work is supported by DARPA RADER Program and EU grant PIRG07-GA-2010-268370.
KeyWords: Anomalous dispersion; Broadband gain; Dispersion-managed systems; Frequency spacing; Multi-wavelengths; Optical diagnostics; Peak power; Pulse sources; Pulse width; Pump power; Pump sources; Raman fiber lasers; Raman lasers; Raman Stokes; Second orders; Short pulse; Spectral broadening; Stability analysis; Stokes pulse; Stokes signal; Telecom fibers; Variational analysis; Wavelength ranges; Wavelength tunable, Communication systems; Dispersion (waves); Dispersions; Fiber amplifiers; Fibers; Laser diagnostics; Measurement theory; Nonlinear analysis; Nonlinear optics; Numerical analysis; Optical communication; Optical materials; Optical pumping; Pulse generators; Pumps; Raman scattering; Solitons; Stability; Ultrashort pulses, Pulsed lasers
DOI: 10.1117/12.889716

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more