Scientific Results

Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution

Year: 2012

Authors: Chong A., Liu H., Nie B., Bale B.G., Wabnitz S., Renninger W.H., Dantus M., Wise F.W.

Autors Affiliation: Department of Applied Physics, Cornell University, Ithaca, NY 14853, United States; Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States; Photonics Research Group, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, United Kingdom; Department of Information Engineering, Universit à di Brescia, Brescia, Italy

Abstract: With existing techniques for mode-locking, the bandwidth of ultrashort pulses from a laser is determined primarily by the spectrum of the gain medium. Lasers with self-similar evolution of the pulse in the gain medium can tolerate strong spectral breathing, which is stabilized by nonlinear attraction to the parabolic self-similar pulse. Here we show that this property can be exploited in a fiber laser to eliminate the gain-bandwidth limitation to the pulse duration. Broad (~200 nm) spectra are generated through passive nonlinear propagation in a normal-dispersion laser, and these can be dechirped to ~20-fs duration.

Journal/Review: OPTICS EXPRESS

Volume: 20 (13)      Pages from: 14213  to: 14220

More Information: This work was supported by the National Science Foundation (ECCS-0901323 and CHE-1014538 Early-Concept Grant for Exploratory Research) and the National Institutes of Health (EB002019). The authors thank D. Pestov for valuable comments.
KeyWords: Bandwidth; Fiber lasers; Pulse generators, Gain bandwidth; Gain medium; Modelocking; Nonlinear propagation; Pulse durations; Pulse generation; Self-similar, Mode-locked fiber lasers, article; computer aided design; equipment; equipment design; fiber optics; instrumentation; laser; signal processing, Computer-Aided Design; Equipment Design; Equipment Failure Analysis; Fiber Optic Technology; Lasers; Signal Processing, Computer-Assisted
DOI: 10.1364/OE.20.014213

Citations: 54
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-01-16
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more