Scientific Results

Control of signal coherence in parametric frequency mixing with incoherent pumps: Narrowband mid-infrared light generation by downconversion of broadband amplified spontaneous emission source at 1550 nm

Year: 2012

Authors: Wabnitz S., Picozzi A., Tonello A., Modotto D., Millot G.

Autors Affiliation: Department of Information Engineering, Università di Brescia, Brescia 25123, Italy; Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), Université de Bourgogne, Dijon 21078, France; Xlim, Université de Limoges, Limoges 87060, France

Abstract: We study, with numerical simulations using the generalized nonlinear envelope equation, the processes of optical parametric and difference- and sum-frequency generation (SFG) with incoherent pumps in optical media with both quadratic and third-order nonlinearity, such as periodically poled lithium niobate. With ultrabroadband amplified spontaneous emission pumps or continua (spectral widths >10 THz), group-velocity matching of a near-IR pump and a short-wavelength mid-IR (MIR) idler in optical parametric generation may lead to more than 15-fold relative spectral narrowing of the generated MIR signal. Moreover, the SFG process may also lead to 6-fold signal coherence improvements. When using relatively narrowband filtered noise pumps (e.g., spectral widths < 1THz), the signal from optical parametric, sum-frequency, and difference-frequency generation has nearly the same spectral width as that of the incoherent pump. Journal/Review: JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B: OPTICAL PHYSICS

Volume: 29 (11)      Pages from: 3128  to: 3135

KeyWords: Acoustooptical devices; Interferometry; Mixer circuits; Nonlinear equations; Nonlinear optics; Optical frequency conversion; Spontaneous emission, Amplified spontaneous emissions; Broadband amplified spontaneous emission sources; Difference-frequency generation; Nonlinear envelope equations; Optical parametric generation; Periodically poled lithium niobate; Sum frequency generation; Third-order non-linearity, Pumps
DOI: 10.1364/JOSAB.29.003128

Citations: 12
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-01-23
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more