Scientific Results

Catching homologies by geometric entropy

Year: 2018

Authors: Felice D., Franzosi R., Mancini S., Pettini M.

Autors Affiliation: School of Science and Technology, University of Camerino, I-62032 Camerino, Italy; INFN-Sezione di Perugia, Via A. Pascoli, I-06123 Perugia, Italy; QSTAR and INO-CNR, largo Enrico Fermi 2, I-50125 Firenze, Italy; Aix-Marseille University, Marseille, France; CNRS Centre de Physique Théorique UMR7332, 13288 Marseille, France

Abstract: A geometric entropy is defined in terms of the Riemannian volume of the parameter space of a statistical manifold associated with a given network. As such it can be a good candidate for measuring networks complexity. Here we investigate its ability to single out topological features of networks proceeding in a bottom-up manner: first we consider small size networks by analytical methods and then large size networks by numerical techniques. Two different classes of networks, the random graphs and the scale-free networks, are investigated computing their Betti numbers and then showing the capability of geometric entropy of detecting homologies. (C) 2017 Elsevier B.V. All rights reserved.


Volume: 491      Pages from: 666  to: 677

KeyWords: Entropy; Geometry; Large scale systems; Numerical methods; Topology, Analytical method; Bottom-up manner; Differential geometry; Geometric entropy; Large-size networks; Numerical techniques; Statistical manifolds; Topological features, Complex networks
DOI: 10.1016/j.physa.2017.09.007

Citations: 1
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-01-16
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more