Scientific Results

Finite-temperature effects on interacting bosonic one-dimensional systems in disordered lattices

Year: 2016

Authors: Gori L., Barthel T., Kumar A., Lucioni E., Tanzi L., Inguscio M., Modugno G., Giamarchi T., D’Errico C., Roux G.

Autors Affiliation: LENS, Dipartimento di Fisica e Astronomia, Universitá di Firenze, Sesto Fiorentino, 50019, Italy; Department of Physics, Duke University, Durham, NC 27708, United States; LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, 91405, France; Istituto Nazionale di Ottica, CNR, Sesto Fiorentino, 50019, Italy; Department of Quantum Matter Physics, University of Geneva, Geneva, 1211, Switzerland

Abstract: We analyze the finite-temperature effects on the phase diagram describing the insulating properties of interacting one-dimensional bosons in a quasiperiodic lattice. We examine thermal effects by comparing experimental results to exact diagonalization for small-sized systems and to density-matrix renormalization group (DMRG) computations. At weak interactions, we find short thermal correlation lengths, indicating a substantial impact of temperature on the system coherence. Conversely, at strong interactions, the obtained thermal correlation lengths are significantly larger than the localization length, and the quantum nature of the T = 0 Bose-glass phase is preserved up to a crossover temperature that depends on the disorder strength. Furthermore, in the absence of disorder, we show how quasiexact finite-T DMRG computations, compared to experimental results, can be employed to estimate the temperature, which is not directly accessible in the experiment.


Volume: 93      Pages from: 033650-1  to: 033650-14

More Information: This work was supported by the ERC (Grant No. 247371-DISQUA), by the EU-H2020 research and innovation programme (Grant No. 641122-QUIC) and by the Italian MIUR (Grant No. RBFR12NLNA-ArtiQuS). G.R. acknowledges support from the French ANR Program No. ANR-2011-BS04-012-01 QuDec. T.G. acknowledges support from the Swiss SNF under Division II.
KeyWords: Bosons; Statistical mechanics; Temperature, Crossover temperature; Density matrix renormalization group; Exact diagonalization; Impact of temperatures; Insulating properties; One-dimensional bosons; One-dimensional systems; Quasi-periodic lattices, Thermal effects
DOI: 10.1103/PhysRevA.93.033650

Citations: 9
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-24
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more