Scientific Results

Long-distance distribution of genuine energy-time entanglement

Year: 2013

Authors: Cuevas A., Carvacho G., Saavedra G, Carine I., Nogueira W. A. T., Figueroa M., Cabello A., Mataloni P., Lima G., Xavier G. B.

Autors Affiliation: Departamento de Fısica, Universidad de Concepcion, 160-C, Concepcion 4070386, Chile; Center for Optics and Photonics, Universidad de Concepcion, Concepcion 4070386, Chile; MSI-Nucleus for Advanced Optics, Universidad de Concepcion, Concepcion 4070386, Chile; Departamento de Ingenierıa Electrica, Universidad de Concepcion, 160-C, Concepcion 4070386, Chile; Departamento de Fısica Aplicada II, Universidad de Sevilla E-41012, Sevilla, Spain; Dipartimento di Fisica, Sapienza Universita` di Roma, Piazzale Aldo Moro 5, Roma I-00185, Italy; Istituto Nazionale di Ottica (INO-CNR), Largo E. Fermi 6 I-50125, Firenze, Italy

Abstract: Any practical realization of entanglement- based quantum communication must be intrinsically secure and able to span long distances avoiding the need of a straight line between the communicating parties. The violation of Bell\’s inequality offers a method for the certification of quantum links without knowing the inner workings of the devices. Energy-time entanglement quantum communication satisfies all these requirements. However, currently there is a fundamental obstacle with the standard configuration adopted: an intrinsic geometrical loophole that can be exploited to break the security of the communication, in addition to other loopholes. Here we show the first experimental Bell violation with energy-time entanglement distributed over 1 km of optical fibres that is free of this geometrical loophole. This is achieved by adopting a new experimental design, and by using an actively stabilized fibre-based long interferometer. Our results represent an important step towards long-distance secure quantum communication in optical fibres.

Journal/Review: NATURE COMMUNICATIONS

Volume: 4      Pages from: 2871  to: 2871

More Information: The authors thank M. Barbieri for valuable discussions. This work was supported by the grants FONDECYT 11110115 and 1120067, CONICYT PFB08-024 and Milenio P10-030-F. A. Cuevas, G.C. and J.C. acknowledge the financial support of CONICYT, while M.F. acknowledges support of FONDECYT 1121010. A. Cabello was also supported by Project No. FIS2011-29400 (MINECO, Spain).
DOI: 10.1038/ncomms3871

Citations: 25
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-01-23
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more