Scientific Results

Investigation on 3D morphological changes of in vitro cells through digital holographic microscopy

Year: 2013

Authors: Memmolo P., Miccio L., Merola F., Netti P.A., Coppola G., Ferraro P.

Autors Affiliation: Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy;
CNR-Istituto Nazionale di Ottica, via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy;
CNR—Istituto per la Microelettronica e Microsistemi,via Pietro Castellino 111, 80131 Napoli, Italy

Abstract: We report the investigation of the identification and measurement of region of interest (ROI) in quantitative phase-contrast maps (QPMs) of biological cells by digital holographic microscopy (DHM), with the aim to analyze the 3D positions and 3D morphology together. We consider as test case for our tool the in vitro bull sperm head morphometry analysis. Extraction and measurement of various morphological parameters are performed by using two methods: the anisotropic diffusion filter, that is based on the Gaussian diffusivity function which allows more accuracy of the edge position, and the simple thresholding filter. In particular we consider the calculation of area, ellipticity, perimeter, major axis, minor axis and shape factor as a morphological parameter, instead, for the estimation of 3D position, we compute the centroid, the weighted centroid and the maximum phase values. A statistical analysis on a data set composed by N = 14 holograms relative to bovine spermatozoa and its reference holograms is reported.

Journal/Review: PROCEEDINGS OF SPIE

Volume: 8792      Pages from: 87920R  to: 87920R

KeyWords: Digital holography; Three dimensional microscopy; Morphological analysis
DOI: 10.1117/12.2020570

Citations: 1
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2019-10-13
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

English