Scientific Results

Toward the optimization of double-pulse LIBS underwater: effects of experimental parameters on the reproducibility and dynamics of laser-induced cavitation bubble

Year: 2012

Authors: Cristoforetti G., Tiberi M., Simonelli A., Marsili P., Giammanco F.

Autors Affiliation: ILIL, National Institute of Optics, Research Area of National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; Department of Physics “E. Fermi,” University of Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy

Abstract: Double-pulse laser-induced breakdown spectroscopy (LIBS) was recently proposed for the analysis of underwater samples, since it overcomes the drawbacks of rapid plasma quenching and of large continuum emission, typical of single-pulse ablation. Despite the attractiveness of the method, this approach suffers nevertheless from a poor spectroscopic reproducibility, which is partially due to the scarce reproducibility of the cavitation bubble induced by the first laser pulse, since pressure and dimensions of the bubble strongly affect plasma emission. In this work, we investigated the reproducibility and the dynamics of the cavitation bubble induced on a solid target in water, and how they depend on pulse duration, energy, and wavelength, as well as on target composition. Results are discussed in terms of the effects on the laser ablation process produced by the crater formation and by the interaction of the laser pulse with floating particles and gas bubbles. This work, preliminary to the optimization of the spectroscopic signal, provides an insight of the phenomena occurring during laser ablation in water, together with useful information for the choice of the laser source to be used in the apparatus. (C) 2012 Optical Society of America

Journal/Review: APPLIED OPTICS

Volume: 51 (7)      Pages from: B30  to: B41

More Information: F. Giammanco, M. Tiberi, A Simonelli, and P. Marsili wish to acknowledge funding from the project NABLA (Decree n.4508, September 1, 2010, by Regione Toscana-Italy, PAR FAS 2007-2013 funds, Action 1.1.a.3).
DOI: 10.1364/AO.51.000B30

Citations: 25
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-01-23
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more