Precise experimental test of models for the breakdown of the Born-Oppenheimer separation: the rotational spectra of isotopic variants of lithium hydride

Year: 1995

Authors: Bellini M., De Natale P., Inguscio M., Varberg T.D., Brown J.M.

Autors Affiliation: Dipartimento di Fisica, Università di Firenze and European Laboratory for Nonlinear Spectroscopy (LENS) Largo E. Fermi 2, 50125 Firenze, Italy;
The Physical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ England

Abstract: The frequencies of 22 rotational transitions in the four naturally occurring isotopic variants of lithium hydride have been measured to an unprecedented accuracy of a few parts in 10(8) with a tunable far-infrared spectrometer. The values of the vibrational and rotational quantum numbers nu and J involved range up to 2 and 12, respectively. The measurements have been fitted with already existing data on the vibration-rotation energy levels of lithium hydride in its ground (1) Sigma(+) state to a single model based on the Dunham expansion. This model has been modified to take into account the Dunham and nonadiabatic corrections and their effects on the reduced mass dependence of the energy levels in the way first described by Watson [J. Mol. Spectrosc. 80, 411 (1980)]. The data are fitted to experimental accuracy to give an improved set of reduced Dunham parameters, U-kl, and an improved value for the Born-Oppenheimer equilibrium bond length for LiH, r(e)(BO)=0.159490811(16) nm. The fit constitutes a stringent test of this type of model for the breakdown of the Born-Oppenheimer approximation.

Journal/Review: PHYSICAL REVIEW A

Volume: 52 (3)      Pages from: 1954  to: 1960

KeyWords: coupled-cluster method; LIH molecule; Hilbert-space; states; dependence
DOI: 10.1103/PhysRevA.52.1954

Citations: 31
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-04-21
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here