Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

Year: 2023

Authors: Aguillard DP., Albahri T., Allspach D., Anisenkov A., Badgley K., Baessler S., Bailey I., Bailey L., Baranov VA., Barlas-Yucel E., Barrett T., Barzi E., Bedeschi F., Berz M., Bhattacharya M., Binney HP., Bloom P., Bono J., Bottalico E., Bowcock T., Braun S., Bressler M., Cantatore G., Carey RM., Casey BCK., Cauz D., Chakraborty R., Chapelain A., Chappa S., Charity S., Chen C., Cheng M., Chislett R., Chu Z., Chupp TE., Claessens C., Convery ME., Corrodi S., Cotrozzi L., Crnkovic JD., Dabagov S., Debevec PT., Di Falco S., Di Sciascio G., Drendel B., Driutti A., Duginov VN., Eads M., Edmonds A., Esquivel J., Farooq M., Fatemi R., Ferrari C., Fertl M., Fienberg AT., Fioretti A., Flay D., Foster SB., Friedsam H., Froemming NS., Gabbanini C., Gaines I., Galati MD., Ganguly S., Garcia A., George J., Gibbons LK., Gioiosa A., Giovanetti KL., Girotti P., Gohn W., Goodenough L., Gorringe T., Grange J., Grant S., Gray F., Haciomeroglu S., Halewood-Leagas T., Hampai D., Han F., Hempstead J., Hertzog DW., Hesketh G., Hess E., Hibbert A., Hodge Z., Hong KW., Hong R., Hu T., Hu Y., Iacovacci M., Incagli M., Kammel P., Kargiantoulakis M., Karuza M., Kaspar J., Kawall D., Kelton L., Keshavarzi A., Kessler DS., Khaw KS., Khechadoorian Z., Khomutov NV., Kiburg B., Kiburg M., Kim O., Kinnaird N., Kraegeloh E., Krylov VA., Kuchinskiy NA., Labe KR., LaBounty J., Lancaster M., Lee S., Li B., Li D., Li L., Logashenko I., Campos AL., Lu Z., Luca A., Lukicov G., Lusiani A., Lyon AL., MacCoy B., Madrak R., Makino K., Mastroianni S., Miller JP., Miozzi S., Mitra B., Morgan JP., Morse WM., Mott J., Nath A., Ng JK., Nguyen H., Oksuzian Y., Omarov Z., Osofsky R., Park S., Pauletta G., Piacentino GM., Pilato RN., Pitts KT., Plaster B., Pocanic D., Pohlman N., Polly CC., Price J., Quinn B., Qureshi MUH., Ramachandran S., Ramberg E., Reimann R., Roberts BL., Rubin DL., Santi L., Schlesier C., Schreckenberger A., Semertzidis YK., Shemyakin D., Sorbara M., Sttzckinger D., Stapleton J., Still D., Stoughton C., Stratakis D., Swanson HE., Sweetmore G., Sweigart DA., Syphers MJ., Tarazona DA., Teubner T., Tewsley-Booth AE., Tishchenko V., Tran NH., Turner W., Valetov E., Vasilkova D., Venanzoni G., Volnykh VP., Walton T., Weisskopf A., Welty-Rieger L., Winter P., Wu Y., Yu B., Yucel M., Zeng Y., Zhang C.

Autors Affiliation: Argonne Natl Lab, Lemont, IL USA; Boston Univ, Boston, MA 02215 USA; Brookhaven Natl Lab, Upton, NY 11973 USA; Budker Inst Nucl Phys, Novosibirsk, Russia; Inst for Basic Sci Korea, CAPP, Daejeon, South Korea; Cornell Univ, Ithaca, NY USA; Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA; INFN, Lab Nazl Frascati, Frascati, Italy; INFN, Sez Napoli, Naples, Italy; INFN, Sez Pisa, Pisa, Italy; INFN, Sez Roma Tor Vergata, Rome, Italy; INFN, Sez Trieste, Trieste, Italy; James Madison Univ, Dept Phys & Astron, Harrisonburg, VA 22807 USA; Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany; Johannes Gutenberg Univ Mainz, Cluster Excellence PRISMA, Mainz, Germany; Joint Inst Nucl Res, Dubna, Russia; Korea Adv Inst Sci & Technol, Dept Phys, Daejeon, South Korea; Univ Lancaster, Lancaster, England; Michigan State Univ, E Lansing, MI 48824 USA; North Cent Coll, Naperville, IL USA; Northern Illinois Univ, De Kalb, IL USA; Regis Univ, Denver, CO USA; Shanghai Jiao Tong Univ, Sch Phys & Astron, Shanghai, Peoples R China; Shanghai Jiao Tong Univ, Tsung Dao Lee Inst, Shanghai, Peoples R China; Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany; Univ Molise, Campobasso, Italy; Univ Udine, Udine, Italy; UCL, Dept Phys & Astron, London, England; Univ Illinois, Urbana, IL USA; Univ Kentucky, Lexington, KY USA; Univ Liverpool, Liverpool, Merseyside, England; Univ Manchester, Dept Phys & Astron, Manchester, Lancs, England; Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA; Univ Michigan, Ann Arbor, MI 48109 USA; Univ Mississippi, University, MS 38677 USA; Univ Virginia, Charlottesville, VA USA; Univ Washington, Seattle, WA 98195 USA; Novosibirsk State Univ, Novosibirsk, Russia; Oak Ridge Natl Lab, Oak Ridge, TN USA; Cockcroft Inst Accelerator Sci & Technol, Daresbury, England; Univ Trieste, Trieste, Italy; INFN, Grp Collegato Udine, Sez Trieste, Udine, Italy; Shanghai Key Lab Particle Phys & Cosmol, Shanghai, Peoples R China; Key Lab Particle Phys Astrophys & Cosmol MOE, Shanghai, Peoples R China; Univ Pisa, Pisa, Italy; Lebedev Phys Inst, Moscow, Russia; NRNU MEPhI, Moscow, Russia; CNR, Ist Nazl Ott, Pisa, Italy; Alliance Univ, Bangalore, Karnataka, India; INFN, Sez Pisa, Pisa, Italy; Istinye Univ, Istanbul, Turkiye; Univ Napoli, Naples, Italy; Univ Rijeka, Rijeka, Croatia; Zhejiang Lab, Res Ctr Graph Comp, Hangzhou, Zhejiang, Peoples R China; Shenzhen Technol Univ, Shenzhen, Guangdong, Peoples R China; Scuola Normale Super Pisa, Pisa, Italy; INFN Grp Collegato Udine, Sez Trieste, Udine, Italy; INFN, Sez Roma Tor Vergata, Rome, Italy; Virginia Tech, Blacksburg, VA USA; Wellesley Coll, Wellesley, MA 02181 USA; Univ Roma Tor Vergata, Rome, Italy; Inst Interdisciplinary Res Sci & Educ ICISE, Quy Nhon, Binh Dinh, Vietna m.

Abstract: We present a new measurement of the positive muon magnetic anomaly, a, equivalent to (g,- 2)/2, from the Fermilab Muon g – 2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, w similar to ip, and of the anomalous precession frequency corrected for beam dynamics effects, wa. From the ratio wa/w similar to ip, together with precisely determined external parameters, we determine a, = 116 592 057(25) x 10-11 (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a,(FNAL) = 116592055(24) x 10-11 (0.20 ppm). The new experimental world average is a,(exp) = 116 592 059(22) x 10-11 (0.19 ppm), which represents a factor of 2 improvement in precision.

Journal/Review: PHYSICAL REVIEW LETTERS

Volume: 131 (16)      Pages from: 161802-1  to: 161802-8

More Information: We thank the Fermilab management and staff for their strong support of this experiment, as well as our university and national laboratory engineers, technicians, and workshops for their tremendous support. Greg Bock and Joe Lykken set the blinding clock and diligently monitored its stability. The Muon g – 2 Experiment was performed at the Fermi National Accelerator Laboratory, a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA) , acting under Contract No. DE-AC02-07CH11359. Additional support for the experiment was provided by the Department of Energy offices of HEP and NP (USA) , the National Science Foundation (USA) , the Istituto Nazionale di Fisica Nucleare (Italy) , the Science and Technology Facilities Council (UK) , the Royal Society (UK) , the National Natural Science Foundation of China (Grants No. 11975153 and No. 12075151) , MSIP, NRF, and IBS-R017-D1 (Republic of Korea) , the German Research Foundation (DFG) through the Cluster of Excellence PRISMA+ (EXC 2118/1, Project ID 39083149) , the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreements No. 101006726 and No. 734303, the European Union STRONG 2020 project under Grant Agreement No. 824093, and the Leverhulme Trust, LIP-2021-01.
KeyWords: Anomalous magnetic moments; Fermilab; Magnetic anomalies; Magnetic-field; Measurements of; Muon decays; Muon distributions; Positive muons; Precession frequency; Running conditions
DOI: 10.1103/PhysRevLett.131.161802

Citations: 135
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-12-08
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here