Study of the degradation of biobased plastic after stress tests in water

Year: 2021

Authors: Ambrosio G.; Faglia G.; Tagliabue S.; Baratto C.

Autors Affiliation: CNR-INO, PRISM Lab, Via Branze 45, 25123 Brescia, Italy; Department of Information Engineering, University of Brescia, 25133 Brescia, Italy; Corapack S.r.l., 22040 Brenna, Italy

Abstract: Research on compostable bioplastics has recently obtained performances comparable to traditional plastics, like water vapor permeability, sealability, and UV transmission. Therefore, it is crucial to create new tools that help the developers of new polymeric composites study them quickly and cost-effectively. In this work, Raman spectroscopy (RS) was proposed as a versatile tool to investigate the degradation of biobased plastics after a stress test in water: this approach is a novelty for food packaging. Treatments at room temperature (RT) and 80 ?C were selected, considering that these biopolymers can be used to packaging ready meals. The investigation was carried out on single-layer sheets of poly-lactic acid (PLA), cellulose ester (CE), poly-butylene succinate (PBS), poly-butylene adipate-co-terephthalate (PBAT), and a new composite material obtained by coupling CE and PBS (BB951) and PLA and CE (BB961). The vibrational modes of the water-treated materials at RT and 80 ?C were compared to the Raman spectra of the pristine bioplastic, and the morphologies of the polymers were analyzed by scanning electron microscopy (SEM) and optical microscopy. Composite sheets were the plastics which were mostly affected by the 80 ?C treatment in water, through changes in morphology (wrinkling with alternate white and transparent zones), as was especially the case for BB951. The Raman spectra acquired in different zones showed that the vibrations of BB951 were generally maintained in transparent zones but reduced or lacking in white zones. At the same time, the single-layer materials were almost unchanged. For BB961, the Raman vibrations were only slightly modified, in agreement with the visual inspection. The results suggest that RS detects the specific chemical bond that was modified, helping us understand the degradation process of biobased plastics after water treatment

Journal/Review: COATINGS

Volume: 11 (11)      Pages from: 1330-1  to: 1330-17

More Information: This work was supported by the sPATIALS3 project financed by (ERDF ROP) 2014-2020 FESR Regione Lombardia-Axis I: “Strengthen technological research, development and innovation (RD&I)”-Action 1.b.1.3: “Support for co-operative R&D activities to develop new sustainable technologies, products and services”-Call Hub.
KeyWords: Raman spectroscopy; food packaging; water treatment; bioplastic
DOI: 10.3390/coatings11111330