Scientific Results

Microwave quantum illumination using a digital receiver

Year: 2020

Authors: Barzanjeh S., Pirandola S., Vitali D., Fink JM.

Autors Affiliation: ‎IST Austria, A-3400 Klosterneuburg, Austria; Univ York, Dept Comp Sci, Deramore Lane, York YO10 5GH, N Yorkshire, England; MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA; Univ Camerino, Sch Sci & Technol, Phys Div, Camerino, MC, Italy; Ist Nazl Fis Nucl, Sez Perugia, Perugia, Italy; CNR INO, Florence, Italy; Univ Calgary, Inst Quantum Sci & Technol IQST, Calgary, AB, Canada

Abstract: Quantum illumination uses entangled signal-idler photon pairs to boost the detection efficiency of low-reflectivity objects in environments with bright thermal noise. Its advantage is particularly evident at low signal powers, a promising feature for applications such as noninvasive biomedical scanning or low-power short-range radar. Here, we experimentally investigate the concept of quantum illumination at microwave frequencies. We generate entangled fields to illuminate a room-temperature object at a distance of 1 m in a free-space detection setup. We implement a digital phase-conjugate receiver based on linear quadrature measurements that outperforms a symmetric classical noise radar in the same conditions, despite the entanglement-breaking signal path. Starting from experimental data, we also simulate the case of perfect idler photon number detection, which results in a quantum advantage compared with the relative classical benchmark. Our results highlight the opportunities and challenges in the way toward a first room-temperature application of microwave quantum circuits.


Volume: 6 (19)      Pages from: eabb0451  to: eabb0451

KeyWords: quantum optic; microwave
DOI: 10.1126/sciadv.abb0451

Citations: 50
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-01-23
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more