Multiparameter squeezing for optimal quantum enhancements in sensor networks

Anno: 2020

Autori: Gessner M., Smerzi A., Pezze L.

Affiliazione autori: Sorbonne Univ, Coll France, Lab Kastler Brossel, ENS,PSL Univ,CNRS, 24 Rue Lhomond, F-75005 Paris, France; CNR, INO, QSTAR, Largo Enrico Fermi 2, I-50125 Florence, Italy; LENS, Largo Enrico Fermi 2, I-50125 Florence, Italy

Abstract: Squeezing currently represents the leading strategy for quantum enhanced precision measurements of a single parameter in a variety of continuous- and discrete-variable settings and technological applications. However, many important physical problems including imaging and field sensing require the simultaneous measurement of multiple unknown parameters. The development of multiparameter quantum metrology is yet hindered by the intrinsic difficulty in finding saturable sensitivity bounds and feasible estimation strategies. Here, we derive the general operational concept of multiparameter squeezing, identifying metrologically useful states and optimal estimation strategies. When applied to spin- or continuous-variable systems, our results generalize widely-used spin- or quadrature-squeezing parameters. Multiparameter squeezing provides a practical and versatile concept that paves the way to the development of quantum-enhanced estimation of multiple phases, gradients, and fields, and for the efficient characterization of multimode quantum states in atomic and optical sensor networks. Quantum metrology often deals with the simultaneous estimation of multiple parameters, but the optimal use of squeezing is not yet fully understood in this case. Here, the authors define a generalised squeezing matrix that quantifies the quantum gain in a moment-based multiparameter estimation protocol.


Volume: 11 (1)      Da Pagina: 3817-1  A: 3817-9

DOI: 10.1038/s41467-020-17471-3

Citazioni: 18
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2022-09-25
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui