Geometrical Bounds on Irreversibility in Open Quantum Systems
Anno: 2018
Autori: Mancino L., Cavina V., De Pasquale A., Sbroscia M., Booth R.I., Roccia E., Gianani I., Giovannetti V., Barbieri M.
Affiliazione autori: Univ Roma Tre, Dipartimento Sci, Via Vasca Navale 84, I-00146 Rome, Italy; Scuola Normale Super Pisa, NEST, Piazza Cavalieri 7, I-56126 Pisa, Italy; CNR, Ist Nanosci, Piazza Cavalieri 7, I-56126 Pisa, Italy; Univ Firenze, Dipartimento Fis, Via G Sansone 1, I-50019 Sesto Fiorentino, FI, Italy; Ist Nazl Fis Nucl, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, FI, Italy; Sorbonne Univ, Inst Phys, 4 Pl Jussieu, F-75005 Paris, France; CNR, Ist Nazl Ott, Largo Enrico Fermi 6, I-50125 Florence, Italy.
Abstract: The Clausius inequality has deep implications for reversibility and the arrow of time. Quantum theory is able to extend this result for closed systems by inspecting the trajectory of the density matrix on its manifold. Here we show that this approach can provide an upper and lower hound to the irreversible entropy production for open quantum systems as well. These provide insights on how the information on the initial state is forgotten through a thermalization process. Limits of the applicability of our hounds are discussed and demonstrated in a quantum photonic simulator.
Giornale/Rivista: PHYSICAL REVIEW LETTERS
Volume: 121 (16) Da Pagina: 160602-1 A: 160602-6
Maggiori informazioni: We are grateful to A. Mari, M. A. Ciampini, R. Raimondi, and M. Paternostro for insightful feedbacks on the manuscript. A. D. P. acknowledges the financial support from the University of Florence in the framework of the University Strategic Project Program 2015 (Project BRS00215).Parole chiavi: Relative Entropy; Information; PrincipleDOI: 10.1103/PhysRevLett.121.160602Citazioni: 22dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2024-10-27Riferimenti tratti da Isi Web of Knowledge: (solo abbonati) Link per visualizzare la scheda su IsiWeb: Clicca quiLink per visualizzare la citazioni su IsiWeb: Clicca qui